Skip to main content

๐ŸŽ›๏ธ Active Filters: Shaping Signals with Precision

In the Fundamentals section, we learned about passive RC filters. They work, but they have limitations:

  • Loading effects (output impedance changes frequency response)
  • No gain (only attenuation)
  • Limited sharpness (gentle roll-off)

Active filters solve all these problems using op-amps.


๐Ÿ” Why Active Filters?โ€‹

FeaturePassive FilterActive Filter
GainAlways < 1Can be > 1
LoadingSensitive to loadBuffered output
Roll-off20dB/decade maxCan be steeper
TuningHard (component interaction)Easier (independent controls)
SizeLarge inductors needed for LFNo inductors!
CostLowModerate

๐ŸŽฏ Filter Basics Refresherโ€‹

What Filters Doโ€‹

  • Pass certain frequencies
  • Reject (attenuate) others

Four Basic Typesโ€‹

  1. Low-Pass Filter (LPF): Passes low frequencies, blocks high frequencies
  2. High-Pass Filter (HPF): Passes high frequencies, blocks low frequencies
  3. Band-Pass Filter (BPF): Passes a band of frequencies
  4. Band-Stop Filter (BSF): Blocks a band of frequencies (notch filter)

๐Ÿ“Š Key Filter Parametersโ€‹

Cutoff Frequency (fcf_c)โ€‹

The frequency where output is -3dB (0.707ร— or 70.7%) of passband value.

Roll-off Rateโ€‹

How quickly the filter attenuates outside the passband.

  • 1st order: 20dB/decade
  • 2nd order: 40dB/decade
  • 3rd order: 60dB/decade

Quality Factor (Q)โ€‹

Determines the sharpness of the response (important for band-pass filters).


๐Ÿ“‰ First-Order Low-Pass Filterโ€‹

The Circuitโ€‹

The Mathโ€‹

Cutoff frequency:

fc=12ฯ€RCf_c = \frac{1}{2\pi RC}

Gain at DC: Set by resistor divider (typically 1 for unity-gain)

Frequency response:

โˆฃH(f)โˆฃ=Av1+(f/fc)2|H(f)| = \frac{A_v}{\sqrt{1 + (f/f_c)^2}}

At f=fcf = f_c: Output is 0.707ร— input (โˆ’3dB)

Roll-off: 20dB/decade above fcf_c


๐ŸŽš๏ธ Design Example: Audio Subwoofer Filterโ€‹

Goal: Pass frequencies below 200Hz, reject above

Design:

  • fc=200Hzf_c = 200Hz
  • Choose C=100nFC = 100nF (common value)

Calculate RR:

R=12ฯ€fcC=12ฯ€ร—200ร—100ร—10โˆ’9=7.96kฮฉR = \frac{1}{2\pi f_c C} = \frac{1}{2\pi \times 200 \times 100 \times 10^{-9}} = 7.96k\Omega

Use standard value: R=8.2kฮฉR = 8.2k\Omega

Result: Clean bass signal with treble removed!


Capacitor Selection

For audio filters:

  • Film capacitors (polypropylene): Best for audio quality
  • Ceramic capacitors (X7R/C0G): Good for general use, cheaper
  • Avoid electrolytics in signal path (use for power supply filtering only)

๐Ÿ“ˆ First-Order High-Pass Filterโ€‹

The Circuitโ€‹

The Mathโ€‹

Cutoff frequency:

fc=12ฯ€RCf_c = \frac{1}{2\pi RC}

Frequency response:

โˆฃH(f)โˆฃ=Avโ‹…(f/fc)1+(f/fc)2|H(f)| = \frac{A_v \cdot (f/f_c)}{\sqrt{1 + (f/f_c)^2}}

At f=fcf = f_c: Output is 0.707ร— input (โˆ’3dB)

Roll-off: 20dB/decade below fcf_c


๐ŸŽค Design Example: Microphone AC Couplingโ€‹

Goal: Remove DC offset, pass audio (20Hz and above)

Design:

  • fc=20Hzf_c = 20Hz
  • Choose R=100kฮฉR = 100k\Omega (high impedance for low noise)

Calculate CC:

C=12ฯ€fcR=12ฯ€ร—20ร—100k=79.6nFC = \frac{1}{2\pi f_c R} = \frac{1}{2\pi \times 20 \times 100k} = 79.6nF

Use standard value: C=82nFC = 82nF or 100nF100nF

Result: DC blocked, audio passes cleanly!


๐ŸŽฏ Second-Order Filters: Steeper is Betterโ€‹

First-order filters are gentle. For sharper filtering, we need second-order (or higher).

Advantagesโ€‹

  • 40dB/decade roll-off (twice as steep)
  • Better separation between pass and stop bands
  • More design control
  1. Sallen-Key (voltage-controlled)
  2. Multiple Feedback (MFB)
  3. State Variable (versatile but complex)

We'll focus on Sallen-Key (most common).


๐Ÿ“‰ Second-Order Low-Pass Filter (Sallen-Key)โ€‹

The Circuitโ€‹

Design Equationsโ€‹

For Butterworth response (maximally flat):

Equal component values:

  • R1=R2=RR_1 = R_2 = R
  • C1=C2=CC_1 = C_2 = C

Cutoff frequency:

fc=12ฯ€RCf_c = \frac{1}{2\pi RC}

Op-amp gain: Av=1.586A_v = 1.586 (for Butterworth)

Set using: Av=1+RfRgA_v = 1 + \frac{R_f}{R_g}


๐Ÿ”Š Design Example: Anti-Aliasing Filterโ€‹

ADC sampling: 10kHz
Anti-aliasing filter: fc=4kHzf_c = 4kHz (Nyquist = 5kHz)

Design:

  • Choose C=10nFC = 10nF
  • Calculate: R=12ฯ€ร—4000ร—10ร—10โˆ’9=3.98kฮฉR = \frac{1}{2\pi \times 4000 \times 10 \times 10^{-9}} = 3.98k\Omega
  • Use R=3.9kฮฉR = 3.9k\Omega
  • Set gain: Av=1.586A_v = 1.586 using Rf=5.86kฮฉR_f = 5.86k\Omega, Rg=10kฮฉR_g = 10k\Omega

Result: Sharp cutoff prevents aliasing, signal integrity maintained!


Filter Response Types

Different applications need different responses:

TypeCharacteristicUse Case
ButterworthMaximally flat passbandGeneral purpose
ChebyshevSteeper roll-off, ripple in passbandWhen sharp cutoff needed
BesselLinear phase (no distortion)Audio, data transmission

๐Ÿ“ˆ Second-Order High-Pass Filter (Sallen-Key)โ€‹

The Circuitโ€‹

Design Equationsโ€‹

For Butterworth:

  • C1=C2=CC_1 = C_2 = C
  • R1=R2=RR_1 = R_2 = R

Cutoff frequency:

fc=12ฯ€RCf_c = \frac{1}{2\pi RC}

Op-amp gain: Av=1.586A_v = 1.586


๐Ÿ“ก Design Example: Infrasonic Filter for Audioโ€‹

Goal: Remove rumble and handling noise below 20Hz

Design:

  • fc=20Hzf_c = 20Hz
  • Choose C=1ฮผFC = 1\mu F (larger C for low frequency)
  • Calculate: R=12ฯ€ร—20ร—1ร—10โˆ’6=7.96kฮฉR = \frac{1}{2\pi \times 20 \times 1 \times 10^{-6}} = 7.96k\Omega
  • Use R=8.2kฮฉR = 8.2k\Omega
  • Set gain: Av=1.586A_v = 1.586

Result: Clean audio, no low-frequency rumble!


๐ŸŽต Band-Pass Filterโ€‹

Combines high-pass and low-pass.

Two Approachesโ€‹

1. Cascade (Simple)โ€‹

HPF โ†’ LPF in series

Requirements: fc(HP)<fc(LP)f_{c(HP)} < f_{c(LP)}

Bandwidth: BW=fc(LP)โˆ’fc(HP)BW = f_{c(LP)} - f_{c(HP)}

2. Dedicated Band-Pass (MFB)โ€‹

Single op-amp, optimized for narrow bands.


๐Ÿ“ป Design Example: Voice Band Filter (300Hz - 3kHz)โ€‹

Cascade approach:

HPF stage:

  • fc=300Hzf_c = 300Hz
  • C=100nFC = 100nF, R=5.3kฮฉR = 5.3k\Omega

LPF stage:

  • fc=3kHzf_c = 3kHz
  • C=10nFC = 10nF, R=5.3kฮฉR = 5.3k\Omega

Bandwidth: 3kHzโˆ’300Hz=2.7kHz3kHz - 300Hz = 2.7kHz

Result: Perfect for voice communication, rejects noise outside speech range!


๐Ÿšซ Band-Stop (Notch) Filterโ€‹

Used to remove specific unwanted frequencies.

Common Application: 50/60Hz Mains Hum Removalโ€‹

Twin-T Notch Filter:

  • Two T-networks (RC and CR) in parallel
  • Op-amp buffer

Design for 50Hz notch:

  • Choose C=1ฮผFC = 1\mu F
  • R=12ฯ€fC=12ฯ€ร—50ร—1ร—10โˆ’6=3.18kฮฉR = \frac{1}{2\pi f C} = \frac{1}{2\pi \times 50 \times 1 \times 10^{-6}} = 3.18k\Omega

Result: Removes 50Hz hum while passing everything else!


๐Ÿ”ฌ Filter Design Processโ€‹

Step-by-Stepโ€‹

  1. Define Requirements

    • Passband frequency range
    • Stopband frequency range
    • Attenuation needed
    • Acceptable ripple
  2. Choose Filter Type

    • Butterworth (general)
    • Chebyshev (steep roll-off)
    • Bessel (phase linearity)
  3. Determine Order

    • 1st order: 20dB/decade
    • 2nd order: 40dB/decade
    • 3rd order: 60dB/decade
  4. Select Topology

    • Sallen-Key (most common)
    • MFB (inverting, good CMRR)
    • State variable (adjustable)
  5. Calculate Components

    • Use design equations
    • Select standard values
    • Verify cutoff frequency
  6. Set Op-Amp Gain

    • Butterworth: 1.586
    • Unity gain: simpler but less sharp
  7. Simulate & Test


โšก Practical Design Tipsโ€‹

Resistor Selectionโ€‹

  • Use 1% tolerance or better
  • Typical range: 1kฮฉ to 100kฮฉ
  • Avoid very high values (noise)
  • Avoid very low values (loading)

Capacitor Selectionโ€‹

  • Use film caps for precision
  • C0G/NP0 ceramics for stability
  • Typical range: 10pF to 1ยตF
  • Match capacitors in pairs if possible

Op-Amp Selectionโ€‹

  • Low noise: OPAx134, LT1028
  • High speed: OPA684, AD8099
  • General purpose: TL07x, LM358
  • Precision: OPA2277, AD8628

Power Supplyโ€‹

  • Use ยฑ15V or ยฑ12V for maximum headroom
  • Single supply: Add DC offset (V/2)
  • Decouple op-amp power pins

๐Ÿ“Š Common Design Pitfallsโ€‹

ProblemCauseSolution
OscillationInsufficient phase marginAdd small capacitor across feedback resistor
NoisePoor grounding, layoutStar grounding, short traces
DistortionOp-amp slew rate too lowChoose faster op-amp
DC offset driftTemperature, bias currentUse precision op-amp or AC coupling
Wrong cutoffComponent toleranceMeasure and adjust, use trimmers

๐Ÿงช Lab Exercise: Build a Tone Controlโ€‹

Objective: Create bass/treble control for audio

Circuit:

  • Bass: 2nd-order LPF, adjustable cutoff (50-200Hz)
  • Treble: 2nd-order HPF, adjustable cutoff (5kHz-20kHz)
  • Summing amplifier: Combine bass + mid + treble

Components:

  • Op-amps: TL072 (dual)
  • Potentiometers for cutoff adjustment
  • Film capacitors
  • 1% resistors

Test:

  • Apply music signal
  • Observe frequency response on oscilloscope
  • Measure cutoff frequencies
  • Adjust for desired tone

โœ… Key Takeawaysโ€‹

  • Active filters use op-amps for gain and buffering
  • 1st order: 20dB/decade, simple but gentle
  • 2nd order: 40dB/decade, sharper transitions
  • Sallen-Key is the most common topology
  • Butterworth gives flat passband response
  • Component selection greatly affects performance
  • Higher-order filters = cascading 2nd-order sections

๐ŸŽ“ Looking Aheadโ€‹

Active filters are essential for:

  • Data acquisition (anti-aliasing)
  • Audio processing (equalizers, crossovers)
  • Communications (channel selection)
  • Control systems (noise rejection)
  • Instrumentation (signal conditioning)

Next, we'll explore instrumentation amplifiers which often include built-in filtering!


๐Ÿ“š Further Resourcesโ€‹

  • Calculate filter designs: Online filter calculators (e.g., Analog Devices Filter Wizard)
  • Simulate circuits: LTSpice, TINA-TI
  • Study filter response: Plot magnitude and phase
  • Experiment with different topologies and orders